Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Sundari Bhaskaran, ${ }^{\text {a }}$

S. Selvanayagam, ${ }^{\text {a }}$
V. Rajakannan, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a* }}$
S. Narasingarao, ${ }^{\text {b }}$
M. Dhanasekaran, ${ }^{\text {c }}$
P. Rajakumar ${ }^{\text {c }}$ and Moon-Jib Kim ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, buniversity of Central Oklahoma, Edmond, Oklahoma, USA,
${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India, and ${ }^{\text {d Department of Physics, }}$ Soonchunhyang University, P O Box, Asan, Chungnam 336-600, Korea

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.126$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

6,22-Dioxaparazylenyl 2,10,18,26-tetrathia33,35 diazapentacyclo[27.3.1.1 $\left.{ }^{4,8} \cdot 1^{12,16} \cdot 1^{20,24}\right]$ -hexatriconta-4,6,8(36),12,14,16(35),20,22,-24(34),28,30,32-dodecaene

The structure of the title molecule, $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}$, is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and $\pi-\pi$ interactions. The molecular packing in the crystal is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$, and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Cyclophanes are cyclic systems, consisting of at least one aromatic moiety bridged by one or more aliphatic chains (De Ridder et al., 2001). Paracyclophane and other π-electron-rich hydrocarbons possessing a cavity-forming topology are known to form endohedral π-complexes with silver and other soft metal atoms (Addad et al., 1983; Heirtzler et al., 1995; Faust, 1995). Cyclophane derivatives constitute a novel building block for the potent human immunodeficiency virus (HIV) protease inhibitor (Ettmayer et al., 1996). Cyclophane derivatives act catalytically as cholesterol shuttles to accelerate the exchange of free cholesterol between cells and serum lipoproteins (Christian et al., 1999), and also act as potential reversal agents of muscle relaxants by chemical chelation (Cameron et al., 2002). The importance of cyclophane derivatives prompted us to undertake the structure analysis of the title compound, (I).

(I)

The structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The $\mathrm{C}-\mathrm{C}$ bond lengths in the benzene and pyridine rings are comparable to the reported mean values of 1.384 (13) and 1.379 (12) Å, respectively (Allen et al., 1987). The $\mathrm{C}-\mathrm{N}$ bond lengths in the pyridine rings also agree with the reported mean value of 1.337 (12) \AA. The $\mathrm{S}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances are comparable to those reported for related structures (Itoh et al., 1999; Weber \& Jones, 1983). The exocyclic angles around atoms C13 and C27 show considerable asymmetry, with the angle $\mathrm{O} 33-\mathrm{C} 13-\mathrm{C} 12\left[125.3(3)^{\circ}\right]$ wider than O33-C13-C14 [114.5 (3)], and the angle O42-C27-C28 [124.1 (3) ${ }^{\circ}$] wider than $\mathrm{O} 42-\mathrm{C} 27-\mathrm{C} 26$ [115.6 (3) ${ }^{\circ}$]. This asymmetry may be due to the short contacts $\mathrm{H} 12 \cdots \mathrm{H} 34 B$ $(2.14 \AA)$ and $\mathrm{H} 28 \cdots \mathrm{H} 41 B(2.19 \AA)$. Similar effects have been

Received 29 August 2003
Accepted 9 September 2003
Online 30 September 2003

Figure 1
The molecular structure of (I), showing 30\% probability displacement ellipsoids. For clarity, H atoms are omitted.

Figure 2
A view of the molecular packing of (I), showing $\pi-\pi, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{S}$ interactions.
observed in a related structure (Bhaskaran et al., 2003). The dihedral angles between the $-\mathrm{C}-\mathrm{S}-\mathrm{C}-$ linkage and the bridged benzene and pyridine rings lie in the ranges 66.3 (1)$87.5(1)^{\circ}$ and $67.9(1)-89.7(1)^{\circ}$, respectively.

The molecular structure is influenced by $\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{~N} 22$ and $\pi-\pi$ interactions between the pyridine ring ($\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 6$) and the benzene ring (C9-C14), with a centroid separation of 3.546 (2) \AA (Fig. 2). In the crystal structure, $\mathrm{C} 23-\mathrm{H} 23 B \ldots$ $\mathrm{O} 42^{\mathrm{i}}$ and $\mathrm{C} 41-\mathrm{H} 41 B \cdots \mathrm{~S} 4^{\mathrm{ii}}$ hydrogen bonds link inversionrelated molecules, forming chains along the b axis (Fig. 2 and

Figure 3
A view of the molecular packing, showing $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Table 2). In addition, inversion-related molecules are also linked by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, such that atom $\mathrm{H} 7 B$ is $2.80 \AA$ from the centroid of the pyridine ring (N1/C2-C6) at $(1-x, 1-y, 1-z)$, with a $\mathrm{C} 7-\mathrm{H} 7 B \cdots$ centroid angle of 136° and a C $7 \cdots$ centroid distance of 3.553 (3) Å.

Experimental

A solution containing α, α^{\prime}-bis[3,5-bis(mercaptomethyl)phenoxy]-pxylene (0.5 mmol) and 2,6-bis(bromomethyl)pyridine (1 mmol) in nitrogen-degassed benzene (100 ml) was added dropwise, over 1012 h , to a well stirred solution of KOH in $\mathrm{EtOH}(95 \%, 850 \mathrm{ml})$. After the addition was complete, the mixture was stirred for an additional 8 h and then evaporated to dryness. The crude product was purified by column chromatography, using ethyl acetate and hexane (2:8) as eluants, to afford (I). Single crystals of (I) were obtained by recrystallization from ethyl acetate, by slow evaporation.

Crystal data

$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}$
$M_{r}=680.93$
Triclinic, $P \overline{1}$
$a=10.2571(10) \AA$
$b=12.3622$ (7) \AA
$c=14.2374$ (10) \AA
$\alpha=94.326(5)^{\circ}$
$\beta=108.527(6)^{\circ}$
$\gamma=96.725$ (6) ${ }^{\circ}$
$V=1687.8$ (2) \AA^{3}

Data collection

Enraf-Nonius CAD-4

diffractometer

$\omega-2 \theta$ scans
6283 measured reflections
5919 independent reflections
3917 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.126$
$S=0.99$
5919 reflections
415 parameters
H -atom parameters constrained
$Z=2$
$Z=2$
$D_{x}=1.340 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=19.7-28.2^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 12 \\
& k=-14 \rightarrow 14 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0668 P)^{2}\right. \\
+0.2974 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.29 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C8	$1.797(3)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.332(3)$
S1-C7	$1.810(3)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.349(3)$
S2-C16	$1.806(3)$	$\mathrm{C} 13-\mathrm{O} 33$	$1.373(4)$
S2-C15	$1.811(3)$	$\mathrm{C} 17-\mathrm{N} 22$	$1.340(3)$
S3-C23	$1.801(3)$	$\mathrm{C} 21-\mathrm{N} 22$	$1.337(3)$
S3-C24	$1.811(3)$	$\mathrm{C} 27-\mathrm{O} 42$	$1.376(3)$
S4-C31	$1.798(3)$	$\mathrm{O} 33-\mathrm{C} 34$	$1.430(4)$
S4-C32	$1.810(3)$	$\mathrm{C} 41-\mathrm{O} 42$	$1.423(4)$
O33-C13-C12	$125.3(3)$	$\mathrm{O} 42-\mathrm{C} 27-\mathrm{C} 26$	$115.6(3)$
O33-C13-C14	$114.5(3)$	$\mathrm{O} 42-\mathrm{C} 27-\mathrm{C} 28$	$124.1(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C15-H15B $\cdots \mathrm{N} 22$	0.97	2.46	$3.220(4)$	135
C23-H23B $\cdots \mathrm{O} 4 \mathrm{i}^{\mathrm{i}}$	0.97	2.48	$3.399(3)$	158
C41-H41B $\cdots \mathrm{S} 4^{\text {ii }}$	0.97	2.77	$3.604(3)$	145

Symmetry codes: (i) $-x, 2-y,-z$; (ii) $-x, 1-y,-z$.
H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic) and $0.97 \AA$ (methylene), and a $U_{\text {iso }}(\mathrm{H})$ value of $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003)'; software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SSN and DV thank the University Grants Commission (UGC), New Delhi, for financial support under the University With Potential For Excellence Programme. VRK thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship.

References

Addad, C. C., Baret, P., Chautemps, P. \& Pierre, J.-L. (1983). Acta Cryst. C39, 1346-1349.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bhaskaran, Selvanayagam, S., Rajakannan, V., Velmurugan, D., Ravikumar, K., Mohammed Abdul Rasheed, A. \& Rajakumar, P. (2003). Acta Cryst. E59, o1429-o1431.
Cameron, K. S., Fielding, L., Mason, R., Muir, A. W., Rees, D. C., Thorn, S. \& Zhang, M. Q. (2002). Bioorg. Med. Chem. Lett. 12, 753-755.
Christian, A. E., Byun, H. S., Zhong, N., Wanunu, M., Marti, T., Furer, A., Diederich, F., Bittman, R. \& Rothblat, G. H. (1999). J. Lipid. Res. 40, 14751482.

De Ridder, D. J. A., Goubitz, K., Fontijn, M., Capkova, P., Dova, E. \& Schenk, H. (2001). Acta Cryst. B57, 780-790.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2, Enraf-Nonius. Delft, The Netherlands.
Ettmayer, P., Billich, A., Hecht, P., Rosenwirth, B. \& Gstach, H. (1996). J. Med. Chem. 39, 3291-3299.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Faust, R. (1995). Angew. Chem. 107, 1559-1562.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Heirtzler, F. R., Hopf, H., Jones, P. G. \& Bubenitschek, P. (1995). Chem. Ber. pp. 1079-1082.
Itoh, K., Nishikawa, K., Hashimoto, M. \& Yamada, H. (1999). Acta Cryst. C55, 1357-1360.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Weber, G. \& Jones, P. G. (1983). Acta Cryst. C39, 1053-1055.

